Exploring the out-of-distribution generalization of nnU-Net for fetal brain tissue segmentation

Maximilian Zenk, Michael Baumgartner, Klaus Maier-Hein Division of Medical Image Computing, DKFZ

nnU-Net methodology

[1] Ulrich, Constantin, et al. "Multitalent: A multi-dataset approach to medical image segmentation." MICCAI 2023.

10/1/2024 | Page 2

Results

Out-of-distribution testing (40 cases)

-		
Model	$\mathrm{mean}\;\mathrm{DSC}$	σ
nnU-Net	46.05	10.56
nnU-Net Res. encoder	49.75	15.25
nnU-Net Res. encoder (pretrained)	46.83	14.53
nnU-Net + BN + DA	48.04	16.57
nnU-Net Res. encoder $+$ BN $+$ DA	52.29	18.71
nnU-Net Res. encoder (pretrained) + $BN + DA$	52.61	19.96

better generalization through strong data augmentation (DA) and residual encoder

In-distribution testing (120 cases)

Model	mean DSC	σ
* nnU-Net	85.17	5.79
\star nnU-Net (batch size 4)	85.09	5.82
nnU-Net Res. encoder	84.85	6.03
\star nnU-Net Res. encoder (pretrained) + BN + DA	84.64	6.13

No model beats base nnU-Net

Final submission: Ensemble \star (retrained on full training data)

